ক্ষেত্রফলের অনুপাত



\(ABCD\) একটি আয়তক্ষেত্র। \(AD\) বাহুর মধ্যবিন্দু \(E\) এবং \(ED\)-এর মধ্যবিন্দু \(F\)। \(AB\) বাহুকে \(CE\) রেখা \(G\) বিন্দুতে এবং \(CD\) বাহুকে \(BF\) রেখা \(H\) বিন্দুতে ছেদ করে। \(\triangle BCG\) এবং \(\triangle BCH\)-এর ক্ষেত্রফলের অনুপাতকে যদি লঘিষ্ঠ কারে \(\frac{m}{n}\) হিসেবে লেখা যায়, তবে \(10m+10n+mn\)-এর মান বের কর।



Consider rectangle \(ABCD\). Let \(E\) be the midpoint of side \(AD\) and let \(F\) be the midpoint of \(ED\). Let \(G\) be the intersection of \(CE\) with the line \(AB\) and let \(H\) be the intersection of \(BF\) with line \(CD\). The ratio of areas of the \(\triangle BCG\) and \(\triangle BCH\) can be expressed as \(\frac{m}{n}\) in lowest terms. Compute \(10m+10n+mn\).



Check Answer


Submit one of them



To See Explanation Your Answer Should be Correct


Related: Geometry